LATEX FOAM

Concentrated latex 60 % (Ammonia preserved HA OR LA) LA is better for Dunlop process

Foam promoters and stabilizers

Promoters are carboxylate soaps and / or resonates

- Castor oil soaps (less efficient foam promoters)
- Potassium oleates etc (fast frothing and give fine textured foam)
- 0.2 – 2 phr (is a function of expansion required)
- foaming tendency PH dependant (6 –9)
- ability to promote and stabilize foam is a function of hydrophobic moiety) – more length give more efficiency – less solubility

Stabilizers are:

1. Quaternary ammonium surface active compounds
 - n- hexadecyltrimethylammonium bromide
 - n-hexadecyl pyridinium bromide
 - n-dodecyl tri(2-hydroxyethyl)ammonium hydroxide

2. Amino compounds and amine oxides
 - Diphneylguanidine
 - Triethyltrimethylenetriamine
 - Trimethyleneetramine
 - Tetraethylenepentamine
 - N-hexadecyldimethylamine oxide

3. Organic hydroxy compounds
 - eg. Phenol and hydroxytoluenes

4. Water soluble hydro colloids
 - Glue, Casein, Cellulose derivaticw, PVA

Loading 0.1 to 0.5 of foam promoter

Action : They enhance the stability of Air/water interface
Destabilize rubber water interface relative to air /water interface so that latex gels before the foam has collapsed appreciably (so they are also called gel sensitizers)

The adsorbed cations of foam stabilizers interact with the surface adsorbed anions
Vulcansing system

Sulphur 2
ZDEC 1 phr
ZMBT – secondary accelerator (MBT – being slightly acidic colloid destabilization, and MBTS insufficiently active at vulcanisation temperature – hence ZMBT)

ZMBT increases modulus

<table>
<thead>
<tr>
<th>ZDEC/ZMBT</th>
<th>2/0</th>
<th>1/5/.5</th>
<th>1/1</th>
<th>.5/1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulus at 50%</td>
<td>16</td>
<td>35</td>
<td>32</td>
<td>34</td>
</tr>
<tr>
<td>Eb</td>
<td>345</td>
<td>277</td>
<td>273</td>
<td>233</td>
</tr>
</tbody>
</table>

Fillers and softeners

Kaolinite clays, cal.carbonate upto 30 phr. 20 phr is more usual (upt 60 phr also encountered). May added as dry or as dispersions.

Softners

Mineral oils up to 5 phr to promote interparticle coalescence during gelation. Larger amount is used to facilitate higher filler loading

Flame retardant

Chlorinated paraffin was, antimony trioxide, zinc borate and hydraed aluminium oxide are used

Antioxidant

DNPD, 2,2’ methylene bis(4-methyl – 6 – t- butyl phenol)
PROCESS

Latex
Oleate
Sulphur
Accelerator
Antioxidant
Filler
Oil

MATURATION (25-30 C 1-3 days under gentle stirring)

Foam stabilizer
ZnO
SSF

Rapid transfer to mould (with mould release agent and warmed to 40 C)
Lid closed
10 minutes (gelation)
curing in air oven / steam oven 100 C 30 – 45 mins)

Continuous process

- More uniform product
- Superior texture
- Uniformity of cell size and density can be easily varied
- Low density without long whipping time
- Minimised loss
- Low rejection and labour cost

Latex for this method:

TS not less than 61.5
DRC /TS not less than 0.98
MST not less than 540
VFA not greater than 0.2
KOH Number not greater than 1.0